ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jean Jacquinot, Guy J. Sadler, The JET Team
Fusion Science and Technology | Volume 21 | Number 4 | July 1992 | Pages 2254-2264
Technical Paper | Special Issue on D-He Fusion / D-3He/Fusion Reactor | doi.org/10.13182/FST92-A29719
Articles are hosted by Taylor and Francis Online.
A new series of D-3He fusion yield experiment has been performed in the Joint European Torus (JET) using ion cyclotron resonance heating (ICRH) to generate a high-energy 3He tail reacting with a background deuterium plasma. Using recently installed antennas with beryllium screens, radio-frequency power reaching 15 MW can be coupled to the plasma at the fundamental cyclotron resonance of 3He near the magnetic axis. Best results are obtained with 3.5-MA discharges in the double-null configuration with high recycling on the outboard limiters to stay in L mode and to control the plasma density and purity. A record fusion power level of Pfus = 140 kW is obtained, corresponding to a reaction rate of 4.6 × 1016 reaction/s. The amplification factor Q = Pfus/PICRH reaches a maximum of 1.25% at PICRH = 10 MW. The previous best result were Pfus = 700 kW and Q = 1%. Time-resolved measurements show a correlation between fusion power and energy stored in the fast 3He ions in agreement with calculations based on classical slowing down of the 3He ions driven by ICRH to an average energy in the mega-electron-volt range.