ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Herbert Daniel
Fusion Science and Technology | Volume 20 | Number 2 | September 1991 | Pages 222-224
Technical Note | Fusion Reactor | doi.org/10.13182/FST91-A29692
Articles are hosted by Taylor and Francis Online.
A muon-catalyzed fusion (µCF) reactor uses the negative muon to catalyze deuteron-triton (d-t) fusion via dµt molecules. The novel reactor whose concept is outlined works with the deuterium-tritium (D-T) mixture in a single volume within a magnetic bottle. This volume serves simultaneously for pion production, pion decay into muons, muon stopping, d-t fusion, and muon reactivation. The pions are produced by proton bombardment of the D-T. The muon reactivation is done by stripping off the muons from muonic alpha particles by continuously moving the muonic alpha particles in cyclotron resonance. The protons for pion production are injected through a hole in the bottle and are kept moving in cyclotron resonance as well. Energy is supplied to the protons and muonic alpha particles in the bottle by a rotating electric field of constant amplitude. Some details of the phase-space behavior of the moving protons and muonic alpha particles are given. An optimistic estimate leads to a net cost of W = 3 GeV per negative muon and an energy yield of Y = 50 GeV per negative muon, both energies in the form of heat.