ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Anthony Busigin, S. K. Sood, K. M. Kalyanam
Fusion Science and Technology | Volume 20 | Number 2 | September 1991 | Pages 179-185
Technical Paper | Tritium System | doi.org/10.13182/FST91-A29688
Articles are hosted by Taylor and Francis Online.
A new high-temperature isotopic exchange (HITEX) fuel processing loop (FPL) design for the International Thermonuclear Experimental Reactor (ITER) is proposed. The new design has advantages over previous ones that were based on catalytic oxidation or decomposition of impurities; it eliminates the need for impurity oxidation and electrolysis of DTO and does not rely on complicated catalytic decomposition reactions. In the HITEX design, tritium is exchanged out of impurities such as tritiated methane, ammonia, and water by swamping with H2 and isotopically equilibrating the mixture in a high-temperature reactor. The reactor consists of a horizontal tube with an axial platinum metal hot wire operated at a temperature of 1173 K. The walls of the reactor are cooled to near room temperature to minimize permeation. Downstream from the reactor is a Pd/Ag permeator to separate out hydrogen and impurities. The separated H2/HT stream is sent to the isotope separation system for tritium recovery.