ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Anthony Busigin, S. K. Sood, K. M. Kalyanam
Fusion Science and Technology | Volume 20 | Number 2 | September 1991 | Pages 179-185
Technical Paper | Tritium System | doi.org/10.13182/FST91-A29688
Articles are hosted by Taylor and Francis Online.
A new high-temperature isotopic exchange (HITEX) fuel processing loop (FPL) design for the International Thermonuclear Experimental Reactor (ITER) is proposed. The new design has advantages over previous ones that were based on catalytic oxidation or decomposition of impurities; it eliminates the need for impurity oxidation and electrolysis of DTO and does not rely on complicated catalytic decomposition reactions. In the HITEX design, tritium is exchanged out of impurities such as tritiated methane, ammonia, and water by swamping with H2 and isotopically equilibrating the mixture in a high-temperature reactor. The reactor consists of a horizontal tube with an axial platinum metal hot wire operated at a temperature of 1173 K. The walls of the reactor are cooled to near room temperature to minimize permeation. Downstream from the reactor is a Pd/Ag permeator to separate out hydrogen and impurities. The separated H2/HT stream is sent to the isotope separation system for tritium recovery.