ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
Sergei A. Zimin
Fusion Science and Technology | Volume 20 | Number 2 | September 1991 | Pages 144-163
Technical Paper | Shielding | doi.org/10.13182/FST91-A29686
Articles are hosted by Taylor and Francis Online.
The radiation shield for the toroidal field (TF) coils in the International Thermonuclear Experimental Reactor (ITER) is optimized using one-dimensional calculations. The ANISN code with the VITAMIN-C group constant library and MAKLIB-IV response library are used for the calculations. Two ways of evaluating the total heating in the TF coils are presented. These methods, being standard approaches, use the results of both one-dimensional shielding calculations and three-dimensional calculations f or the neutron wall load distribution on the reactor first wall, and they seem to be useful f or future work on ITER and ITER-like projects such as the Next European Torus (NET), Fusion Experimental Reactor (FER), and Compact Ignition Tokamak (CIT). The main results of the optimization and the total heating evaluation are compared with U.S. and European team results. The local nuclear responses in the TF coils remain within the prescribed limits everywhere. The total nuclear heating in the ITER TF coils is within the 50-kW limit in the physics phase using either the U.S. or the USSR blanket concept. The total nuclear heating in the ITER TF coils during the technology phase is expected to be ∼20% lower than that in the physics phase.