ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Michael Bittner, Andreas Meister, Detlef Ohms, Elief Paffrath, Dietmar Rahner, Rainer Schwierz, Dieter Seeliger, Klaus Wiesener, Peter Wüstner
Fusion Science and Technology | Volume 20 | Number 3 | November 1991 | Pages 334-348
Technical Note on Cold Fusion | doi.org/10.13182/FST91-A29674
Articles are hosted by Taylor and Francis Online.
Two successive long-duration experiments for the observation of deuteron-deuteron (d-d) fusion neutrons emanating from a massive palladium slab are described. The experimental effects observed are discussed through the use of a simple plasmalike model for the time dependence of fusion reactions in condensed matter, which is modified for a plane geometry. This results in a plasma fusion rate of . While plasmalike behavior leading to observable d-d fusion reaction intensities occurs temporarily, under nonequilibrium conditions of electrolytic charging only, for permanently occurring d-d molecular fusion in the fully loaded palladium slab from the experiments, only an upper limit can be set, which is given by Λd-d < 10-26 s-1.