ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Osamu Mitarai, Akira Hirose, Harvey M. Skarsgard
Fusion Science and Technology | Volume 20 | Number 3 | November 1991 | Pages 285-294
Technical Paper | Fusion Reactor | doi.org/10.13182/FST91-A29669
Articles are hosted by Taylor and Francis Online.
An alternating current (ac) tokamak reactor with ohmic ignition and long pulses due to bootstrap current is proposed as a simple and quasi-continuous fusion power plant. An ohmic plasma current of 23 MA with a high toroidal field of ∼10 T in the Alternating Current Tokamak Reactor-Upgrade (ACTR-U) (10-m major radius and 2-m minor radius) provides the ohmic ignition. After entering the ignition regime, the plasma current is reduced by one-half to enhance the bootstrap current with a high-beta poloidal field (βp ∼ 2) to prolong the pulse length. When the ohmic transformer reaches the maximum flux, the plasma current is ramped down and reversed; ac operation follows. We thus demonstrate that an ohmic transformer alone is in principle sufficient for a quasi-continuous deuterium-tritium fusion reactor.