ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Talbot A. Chubb, Scott R. Chubb
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 93-99
Technical Note on Cold Fusion | doi.org/10.13182/FST91-A29646
Articles are hosted by Taylor and Francis Online.
A theory of solid-state fusion based on the interaction between D+ and 4He++ ion band states within a host lattice is presented. Formation of ion band-state deuterium is thermodynamically favored when lattice strain energy is greater than the incremental chemical potential of the band state. The key fusion step is a coalescence fluctuation that converts a two-fold occupation state of electrostatic zero-point-motion size into a state of nuclear dimensions. Rates are calculated using the Fermi Golden Rule. Fusion energy is shared between band-state members and subsequently transferred to the lattice.