ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
Randell L. Mills, Steven P. Kneizys
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 65-81
Technical Note on Cold Fusion | doi.org/10.13182/FST91-A29644
Articles are hosted by Taylor and Francis Online.
According to a novel atomic model, the predominant source of heat of the phenomenon called cold fusion is the electrocatalytically induced reaction whereby hydrogen atoms undergo transitions to quantized energy levels of lower energy than the conventional ground state. These lower energy states correspond to fractional quantum numbers. The hydrogen electronic transition requires the presence of an energy hole of ∼27.21 eV provided by electrocatalytic reactants (such as Pd2+/Li+, Ti2+, or K+/K+) and results in “shrunken atoms” analogous to muonic atoms. In the case of deuterium, fusion reactions of shrunken atoms predominantly yielding tritium are possible. Calorimetry of pulsed current and continuous electrolysis of aqueous potassium carbonate (K+/K+ electrocatalytic couple) at a nickel cathode is performed in single-cell dewar calorimetry cells. Excess power out exceeded input power by a factor of >37.