ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
Michael Täschner, Claus Bunnenberg, Werner Gulden
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 58-64
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST91-A29643
Articles are hosted by Taylor and Francis Online.
It is important in the design of future fusion reactors and associated facilities that incorporate passive safety to take account of the possible environmental impact of accidental tritium release. Reliable information on dose consequences can be obtained by evaluating urine samples from persons exposed to tritium. Translating the results of the environmental HT experiment performed in France in 1986 into worst-case exposure conditions, the effective dose equivalent to an individual with highest exposure at a distance of 800 m (typical for site boundaries) is ∼1 × 10−4 Sv per gram of tritium emitted as HT when inhalation and skin absorption are considered. From this value, maximum permissible amounts of accidentally released HT can be derived on the basis of regulatory or anticipated dose limits. A comparison to a tritium release in the form of HTO shows that there is no fixed factor that can be used to convert the dose consequences of an HT release into those of a corresponding HTO release. The factor ranges from at least 10 for worst-case conditions to ∼70.