ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
Michael Täschner, Claus Bunnenberg, Werner Gulden
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 58-64
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST91-A29643
Articles are hosted by Taylor and Francis Online.
It is important in the design of future fusion reactors and associated facilities that incorporate passive safety to take account of the possible environmental impact of accidental tritium release. Reliable information on dose consequences can be obtained by evaluating urine samples from persons exposed to tritium. Translating the results of the environmental HT experiment performed in France in 1986 into worst-case exposure conditions, the effective dose equivalent to an individual with highest exposure at a distance of 800 m (typical for site boundaries) is ∼1 × 10−4 Sv per gram of tritium emitted as HT when inhalation and skin absorption are considered. From this value, maximum permissible amounts of accidentally released HT can be derived on the basis of regulatory or anticipated dose limits. A comparison to a tritium release in the form of HTO shows that there is no fixed factor that can be used to convert the dose consequences of an HT release into those of a corresponding HTO release. The factor ranges from at least 10 for worst-case conditions to ∼70.