ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
The spotlight shines on a nuclear influencer
Brazilian model, nuclear advocate, and philanthropist Isabelle Boemeke, who the online TED lecture series describes as “the world’s first nuclear energy influencer,” was the subject of a recent New York Times article that explored her ardent support for and advocacy of nuclear technology.
Michael Täschner, Claus Bunnenberg, Werner Gulden
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 58-64
Technical Paper | Safety/Environmental Aspect | doi.org/10.13182/FST91-A29643
Articles are hosted by Taylor and Francis Online.
It is important in the design of future fusion reactors and associated facilities that incorporate passive safety to take account of the possible environmental impact of accidental tritium release. Reliable information on dose consequences can be obtained by evaluating urine samples from persons exposed to tritium. Translating the results of the environmental HT experiment performed in France in 1986 into worst-case exposure conditions, the effective dose equivalent to an individual with highest exposure at a distance of 800 m (typical for site boundaries) is ∼1 × 10−4 Sv per gram of tritium emitted as HT when inhalation and skin absorption are considered. From this value, maximum permissible amounts of accidentally released HT can be derived on the basis of regulatory or anticipated dose limits. A comparison to a tritium release in the form of HTO shows that there is no fixed factor that can be used to convert the dose consequences of an HT release into those of a corresponding HTO release. The factor ranges from at least 10 for worst-case conditions to ∼70.