ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Schulz Electric™ Refurbishes Critical Circulating Water Pump Motor in Only Four Days
Schulz Electric™ was contacted by a nuclear power plant in the New England region that serves a community of over 2 million homes. After five years of service, a 1500 HP, 4 kV, 24-pole circulating water pump motor (measuring approximately 7’ wide, 8’ tall, and weighing several tons) needed refurbishing while the plant was still online. To add to their concern, the power plant is located close to the ocean. The aging motor was not only approaching the end of its serviceable life, but was highly susceptible to moisture intrusion and the salt-laden air, which can build up in air passages within the motor. These environmental conditions can lead to elevated operating temperatures and corrosion developing on the rotor, stator, and shaft components. These factors combined, placed the plant at an increased risk of downtime that could have potentially led to a significant loss of revenue if they were forced into a shutdown event.
Vito Renda, Loris Papa
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 40-47
Technical Paper | Divertor System | doi.org/10.13182/FST91-A29641
Articles are hosted by Taylor and Francis Online.
The performance and limits of a divertor plate for the Next European Torus (NET) are assessed. The design is a plasma-facing component that integrates the divertor plates and the inboard first wall in a monoblock panel. It is made of stainless steel poloidal U-tubes embedded in a copper matrix and protected by a carbon-fiber composite graphite armor. The thermal and thermomechanical behavior are analyzed in the high thermal flux zone taking into account the actual surface heating, which ranges from 5 to 10 MW/m2. A simplified preliminary analysis assesses the water flow and the component geometry in accordance with the system and material data foreseen for NET. It is shown that if the surface temperature of the armor is limited to 1273 K, the graphite thickness must be limited to 7.5 mm. Detailed thermal and mechanical finite element analyses, performed by the CASTEM 2000 code, show that the cooling tubes remain just below the creep regime temperature. The allowable limits prescribed by international standards are met, and the component's lifetime is 3000 cycles.