ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
Sümer Şahin, Ertuğrul Baltacioğlu, Hüseyin Yapici
Fusion Science and Technology | Volume 20 | Number 1 | August 1991 | Pages 26-39
Technical Paper | Blanket Engineering | doi.org/10.13182/FST91-A29640
Articles are hosted by Taylor and Francis Online.
The potential of a catalyzed fusion-driven fast hybrid blanket to regenerate Canada deuterium uranium (CANDU) spent fuel is investigated. The investigations are done to achieve enrichment grades of fissile isotopes (EGFIs) in four applications: 1. recycling in a conventional commercial CANDU reactor (EGFI = 0.71 to 0.9%) 2. recycling in an advanced conceptual CANDU reactor with a high burnup rate (EGFI = 1%) 3. recycling in an advanced breeder with thorium fuel (EGFI > 1.5%) 4. recycling in a conventional light water reactor (LWR)(EGFI>3%). The regeneration periods of 5 to 7, 6 to 9, 12 to 15, and >30 months, respectively, are evaluated for the four reactor types under a first-wall fusion neutron current load of 1014(2.45-MeV n)/cm2-s and 1014(14.1-MeV n)/cm2-s, corresponding to 2.64 MW/m2 and a plant factor of 75%. During the regeneration process, the burnup rates vary from 2000 MWd/t (for conventional CANDU) to 10000 MWd/t (forLWRs), so that multiple recycling becomes possible.