ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
J. W. Davidson, M. E. Battat
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 2007-2015
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29636
Articles are hosted by Taylor and Francis Online.
A precise calculational analysis of the INEL manganese bath experiment to measure beryllium neutron multiplication has been performed. The goal throughout the analysis was the minimization of all sources of error due to the calculational model and method. An extremely detailed three-dimensional Monte Carlo geometry model was developed for use with the code MCNP. Calculations were performed for a bare-source and four beryllium sample configurations for both DT and 252Cf neutron sources. The primary objective of the analysis was the calculation of various neutron-economy parameters applied as experimental corrections, either directly or as verification of measured values. The most significant of these were the tank leakage, duct streaming, structural absorption, fractional bath capture in manganese, high-energy parasitic bath absorption, neutron multiplication in other materials, and indirect absorption and multiplication in beryllium.