ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
L. M. Gomes, P. N. Stevens
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1996-2000
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29634
Articles are hosted by Taylor and Francis Online.
This work revisits the problem of ray effects in discrete ordinates calculations that frequently occurs in two- and three-dimensional systems which contain isolated sources within a highly absorbing medium. The effectiveness of using a first collision source or a second collision source are analyzed as possible remedies to mitigate this problem. The first and second scattering sources are calculated with the Monte Carlo method that is intrinsically free from ray effects. The scattering source is then coupled to a discrete ordinates code for a hopefully ray-effect-free transport calculation. The scattering source generated by the Monte Carlo method is distributed throughout geometry space and therefore would be less likely to produce ray effects in the discrete ordinates calculation. This remedy for the ray effect is demonstrated for a point source in cylindrical geometry and for a localized distributed source in X-Y geometry. The first collision and second collision sources are generated by three-dimensional Monte Carlo calculations and enables its application to a variety of source configurations and the results can be coupled to a two- or three-dimensional discrete ordinates transport code. The Monte Carlo computational time and precision requirements constitute some limitations but these are minimized since the Monte Carlo transport is performed only up to the first collision.