ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
G. L. Varsamis, D. Steiner, M. J. Embrechts
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1974-1978
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29631
Articles are hosted by Taylor and Francis Online.
This work presents the analysis of neutron streaming through a tungsten-based shield, modelled as a set of interconnecting tungsten plates, cooled by an aqueous lithium salt solution. The plates are connected with right-angle bends, and then merge to a stainless-steel casing. Discrete neutron streaming paths exist through the right-angle connections and through the stainless steel joints. The analysis was performed in one and two dimensions, with discrete ordinates codes, and in three dimensions with a Monte Carlo code. The results indicate clear streaming paths, both behind ducts and also in cases were materials with very different neutron mean free paths are connected. The neutron flux was observed to peak behind the stainless-steel joints, when compared to adjoining tungsten shield sections. Streaming through the right-angle connections between tungsten plates was limited. The discrete ordinate codes (with low order quadrature sets), generally underestimated the neutron streaming. Higher order approximations required extensive computing time approaching that of the Monte Carlo analysis.