ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
K.G. Porges, M.M. Bretscher
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1903-1908
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29620
Articles are hosted by Taylor and Francis Online.
Measurement of the local breeding rate in a large assembly of fusion blanket candidate materials, irradiated by a fusion neutron source, serves the dual purpose of blanket design support and, perhaps more importantly, of testing analytical methods and cross-section libraries. In this report, we present technical details of a tritium production rate measurement scheme based on the use of neutron irradiation of encapsulated lithium metal samples and subsequent thermal digestion of the samples in a metered carrier hydrogen stream, conversion to THO and LS-counting. A comparison of the scheme to other means of tritium production rate (TPR) measurement with respect to accuracy and other characteristics indicates that its potential accuracy exceeds that of wet-chemistry tritium extraction from lithium salt pellets or TLD deployment and is comparable to the best accuracy of lithium-glass traversing schemes. The sample fabrication and tritium extraction techniques that will be described evolved from well-tested equipment that was previously used in critical (fission) reactor work and cross section measurements, but needed some modification to increase the throughput and thus allow processing the large number of samples required in blanket assay. The applicability of this scheme to measurements at arbitrarily high neutron flux and higher temperatures will be briefly commented on.