ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K.G. Porges, M.M. Bretscher
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1903-1908
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29620
Articles are hosted by Taylor and Francis Online.
Measurement of the local breeding rate in a large assembly of fusion blanket candidate materials, irradiated by a fusion neutron source, serves the dual purpose of blanket design support and, perhaps more importantly, of testing analytical methods and cross-section libraries. In this report, we present technical details of a tritium production rate measurement scheme based on the use of neutron irradiation of encapsulated lithium metal samples and subsequent thermal digestion of the samples in a metered carrier hydrogen stream, conversion to THO and LS-counting. A comparison of the scheme to other means of tritium production rate (TPR) measurement with respect to accuracy and other characteristics indicates that its potential accuracy exceeds that of wet-chemistry tritium extraction from lithium salt pellets or TLD deployment and is comparable to the best accuracy of lithium-glass traversing schemes. The sample fabrication and tritium extraction techniques that will be described evolved from well-tested equipment that was previously used in critical (fission) reactor work and cross section measurements, but needed some modification to increase the throughput and thus allow processing the large number of samples required in blanket assay. The applicability of this scheme to measurements at arbitrarily high neutron flux and higher temperatures will be briefly commented on.