ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
M. Z. Youssef, A. Kumar, M. Abdou, M. Nakagawa, K. Kosako, Y. Oyama, T. Nakamura
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1891-1902
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29619
Articles are hosted by Taylor and Francis Online.
Effort in Phase IIC of the US/JAERI Collaborative Program on Fusion Neutronics was focused on performing integral experiments and post analyses on blankets that include the actual hetergeneities found in several blanket designs. Two geometrical arrangements were considered, namely multilayers of Li2O and beryllium in an edge-on, horizontally alternating configuration for a front depth of 30 cm, followed by the Li2O breeding zone (Be edge-on, BEO, experiment), and vertical water coolant channels arrangement in which one is placed behind the first wall and two other channels (width of 0.5 cm each) are placed at depths of 10 and 30 cm from the first wall (WCC experiment). The objectives are to experimentally verify the enhancement in tritium production in the first experiment and to examine the accuracy of predicting tritium production and other reaction rates around these heterogeneities in the two experiments. In the BOE system, it was shown that, with the zonal method to measure tritium production from natural lithium (Tn), the calculated-to-measured values (C/E) are 0.95 − 1.05 (JAERI) and 0.98 − 0.9 (U.S.), which is consistent with the results obtained in other Phases of the Program. In the WCC experiment, there is a noticeable change in C/E values for T6 near the coolant channels where steep gradients in T6 production are observed. The C/E values obtained with the Li-foils to measure T6 are better than those obtained by the Li-glass method. As for T7, calculations and measurements by NE213 method are within ± 15% in JAERI's analysis, but larger values (∼ 20–25%) are obtained in the U.S. analysis. Around heterogeneities, the prediction accuracy for T7 is better than that for T6. In both experiments, the prediction accuracy for high-threshold reactions [(e.g. 93Nb(n,2n)] is within ± 10% as obtained by both Monte Carlo and Sn codes, however, it was shown that the 58Ni(n,2n) cross-section of ENDF/B-V should be increased by 25–30% at high incident neutron energies to give better C/E values.