ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
C. Konno, Y. Oyama, Y. Ikeda, K. Kosako, H. Maekawa, T. Nakamura, A. Kumar, M.Z. Youssef, M.A. Abdou, E.F. Bennett
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1885-1890
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29618
Articles are hosted by Taylor and Francis Online.
A pseudo line DT neutron source has been realized by moving an experimental assembly with respect to a point DT source in the Phase-III experiment of JAERI/USDOE collaborative program on fusion blanket neutronics. In order to examine characteristics of the pseudo-line source made by two types of operational modes, source term experiments were carried out. Neutron flux distribution above 10 MeV was measured by NE213 scintillator with stepwise source mode. The reaction rate distributions were also measured by activation foil technique with continuous source mode. The measured distributions were almost flat over central 1 m region of the simulated line source and agreed relatively with a simple calculation assuming the ideal line source. From these experimental results it was concluded that both modes worked successfully to obtain the pseudo-line source and could simulate well neutron flux distribution emitted from a finite length line source with small influence of reaction kinematics and target structure.