ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. Konno, Y. Oyama, Y. Ikeda, K. Kosako, H. Maekawa, T. Nakamura, A. Kumar, M.Z. Youssef, M.A. Abdou, E.F. Bennett
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1885-1890
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29618
Articles are hosted by Taylor and Francis Online.
A pseudo line DT neutron source has been realized by moving an experimental assembly with respect to a point DT source in the Phase-III experiment of JAERI/USDOE collaborative program on fusion blanket neutronics. In order to examine characteristics of the pseudo-line source made by two types of operational modes, source term experiments were carried out. Neutron flux distribution above 10 MeV was measured by NE213 scintillator with stepwise source mode. The reaction rate distributions were also measured by activation foil technique with continuous source mode. The measured distributions were almost flat over central 1 m region of the simulated line source and agreed relatively with a simple calculation assuming the ideal line source. From these experimental results it was concluded that both modes worked successfully to obtain the pseudo-line source and could simulate well neutron flux distribution emitted from a finite length line source with small influence of reaction kinematics and target structure.