ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
A. Kumar, M.Z. Youssef, Y. Ikeda, C. Konno, Y. Oyama
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1859-1866
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29614
Articles are hosted by Taylor and Francis Online.
The recently concluded phase IIIA experiments of the USDOE/JAERI collaborative program mark a watershed in that a D-T line source was simulated by moving detectors/annular Li2O blanket-assembly with respect to a stationary point source. Three experiments were conducted in three stages during this phase: (i) source characterization (step-mode, 10 cm step, 9h47m duration, 3 sample locations), (ii) in-situ short irradiation (stationary assembly, 30m duration, 2 sample locations), (iii) in-situ long irradiation (continuous-mode, 9h51m duration, 3 sample locations). The sample-materials included: Fe, Ni, Mo, SS316, W, Ta, Zr, Al, Sn, Ag, Pb, Zn, Nb, Ti, V, Co and In. The sample locations inside the phase IIIA assembly were so chosen as to monitor (a) the impact of lack of line source simulation on decay γ-radioactivity, (b) the influence of SS304 first wall, (c) the role of neutron spectral degradation in the annular Li2O fusion blanket assembly. The experimental results demonstrate that: (1) continuous-mode operation provides better simulation of line source even for radioactive products of half lives as low as ∼10 min, (2) the decay γ-emission rates generally drop as one moves away from the center of simulated line source (length=2 meters), (3) the presence of surrounding annular blanket leads to larger enhancements in the γ-emission rates ascribable to reactions induced by energy-degraded neutrons. The analysis of these measurements shows up discrepancies for most of the materials. DKRICF lacks decay data for many isotopes. For example, decay data is absent for Y, 186Ta, 187W, and 181W. For Zr, 91mY contribution is severely underestimated. Severe underestimation hits Zn and Sn (especially 117mSn and 111In). REAC2 related more important observations can be summarized as follows: For Mo, 91Mo is strongly overestimated and 101Mo, 99Mo, 98mNb, 97Nb, 93mNb are underestimated. For Zr, 89m+gZr, 90mY and 91mY are strongly overestimated. For W, 179mW yields abnormally large contribution for both short and long cooling times. The data base for Zn needs complete overhaul as for some isotopes there is strong overestimation (65Ni, 67Cu and 69Zn), while yet for others, there is severe underestimation (69mZn, 65Zn and 64Cu).