ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
M. Z. Youssef, Y. Watanabe, A. Kumar, Y. Oyama, K. Kosako
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1843-1852
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29612
Articles are hosted by Taylor and Francis Online.
Performing integral experiments with a 14 MeV line source offers better simulation to the neutron source conditions (in terms of energy and angular distribution) of the toroidal plasmas in Tokamaks. Because of the linearity of the neutron transport equation, a line source can be simulated by superimposing results from many point sources aligned on one line, provided the number of these point sources is large. The simulation was experimentally realized at the FNS facility within the USDOE/JAERI Collaborative Program on Fusion Neutronics. In this paper, the theoretical aspects of a line source simulation are discussed. Specifically, analytical results for achieving this simulation by continuously moving a point source of speed V within a distance of length 2L; [continuous operation (CO.) mode] are compared to results obtained from several point sources located at discrete number of locations within the distance 2L [stepwise operation (S.O.) mode]. In the C.O. mode it was shown that for activation measurements, ideal simulation to a line source of length 2L with a point source moving at speed V could be achieved, provided the decay constant λ of the activated product satisfies the condition λ.(2L/V) << 1. In the S.O. mode, the number of point source locations, the distance from the simulated line source where the neutron radiation effects are measured, and the type of reactions (threshold vs. non-threshold) considered are important factors in determining the degree of simulation. For example, it was shown that better simulation can be achieved if the source locations are chosen to be at points that are directly related to the roots xi's of the Gauss-Legendre set PN(xi)=0, where N is the number of source locations. It was shown that larger number of point sources are needed to reproduce the line source effects on threshold-type reactions [e.g. 7Li(n,n'α)t] than on non-threshold reactions [e.g. 6Li(n,α)t]. Several transport calculations were also performed to study the degree of simulation from multiple point sources on the characteristics of the test assembly used in Phase IIIA of the program. In particular, the anisotropy of the incident neutron source arising from the structure of the target assembly, coolant channel, and water coolant was studied and compared to the case of isotropic point sources. It was shown that using N ≥ 20 points is adequate to the analysis of Phase III.A experiments.