ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
H. Attaya, Y. Gohar, D. Smith
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1837-1842
Neutronic | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29611
Articles are hosted by Taylor and Francis Online.
Activation analysis has been made for the US ITER design. The radioactivity and the decay heat have been calculated, during operation and after shutdown for the two ITER phases, the Physics Phase and the Technology Phase. The Physics Phase operates about 24 full power days (FPDs) at fusion power level of 1100 MW and the Technology Phase has 860 MW fusion power and operates for about 1360 FPDs. The point-wise distributions of the decay gamma sources have been calculated everywhere in the reactor at several times after the shutdown of the two phases and are then used to calculate the biological dose everywhere in the reactor. Activation calculations have been made also for ITER divert or. The results are presented as a function of continuous operation times and for only one pulse. The effect of the pulsed operation on the radioactivity is analyzed.