ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
C. R. Walthers, E. M. Jenkins, D. W. Sedgley, T. H. Batzer, S. Konishi, S. O'Hira, Y. Naruse
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1811-1813
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29606
Articles are hosted by Taylor and Francis Online.
In 1988, a prototypical vacuum system was added to the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. Since then various pumping scenarios, which might be expected in a fusion reactor, have been performed without any serious shortcomings being apparent in the use of compound cryopumps as reactor high vacuum pumps. Last year, the question of whether a compound pump was necessary was addressed in a pair of runs in which deuterium helium mixtures were pumped on a single 4K activated charcoal panel. In these tests, the condensing stage of the pump was maintained at 77K and did not contribute to pumping either deuterium or helium. Results were very encouraging: in both tests the charcoal readily pumped helium until a max loading of 0.4 T 1 cm−2 of helium on charcoal was attained. Helium speed was not affected by deuterium which may have been pumped by either a condensing or sorbing mechanism or by a combination of both. In addition, the helium loading at saturation was 0.4 T 1 cm−2 even though the D2/He ratio was doubled between runs. Conjecture about why the charcoal helium capacity was constant led to the pump operation described in this paper. It was felt that measurement of helium capacity after careful deuterium preloads might help to explain the mechanism involved in co-pumping of a condensible and a noncondensible on a single 4K cryosorber surface. This paper presents the results of series of helium capacity runs preceded by a range of deuterium preloads and attempts to explain the mechanism involved.