ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
C. R. Walthers, E. M. Jenkins, D. W. Sedgley, T. H. Batzer, S. Konishi, S. O'Hira, Y. Naruse
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1811-1813
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29606
Articles are hosted by Taylor and Francis Online.
In 1988, a prototypical vacuum system was added to the Tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory. Since then various pumping scenarios, which might be expected in a fusion reactor, have been performed without any serious shortcomings being apparent in the use of compound cryopumps as reactor high vacuum pumps. Last year, the question of whether a compound pump was necessary was addressed in a pair of runs in which deuterium helium mixtures were pumped on a single 4K activated charcoal panel. In these tests, the condensing stage of the pump was maintained at 77K and did not contribute to pumping either deuterium or helium. Results were very encouraging: in both tests the charcoal readily pumped helium until a max loading of 0.4 T 1 cm−2 of helium on charcoal was attained. Helium speed was not affected by deuterium which may have been pumped by either a condensing or sorbing mechanism or by a combination of both. In addition, the helium loading at saturation was 0.4 T 1 cm−2 even though the D2/He ratio was doubled between runs. Conjecture about why the charcoal helium capacity was constant led to the pump operation described in this paper. It was felt that measurement of helium capacity after careful deuterium preloads might help to explain the mechanism involved in co-pumping of a condensible and a noncondensible on a single 4K cryosorber surface. This paper presents the results of series of helium capacity runs preceded by a range of deuterium preloads and attempts to explain the mechanism involved.