ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
J. A. Koski, R. D. Watson, P. L. Goranson, A. M. Hassanein, J. C. Salmonson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1729-1735
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29591
Articles are hosted by Taylor and Francis Online.
Critical Heat Flux (CHF), also called burnout, is one of the major design limits for water-cooled divertors in tokamaks. Another important design issue is the correct thermal modeling of the divertor plate geometry where heat is applied to only one side of the plate and highly subcooled flow boiling in internal passages is used for heat removal. This paper discusses analytical techniques developed to address these design issues, and the experimental evidence gathered in support of the approach. Typical water-cooled divertor designs for the International Thermonuclear Experimental Reactor (ITER), where peak divertor heat fluxes as high as 15 MW/m2 are expected, are analyzed, and design margins estimated. Peaking of the heat flux at the tube-water boundary is shown to be an important issue, and design concerns which could lead to imposing large design safety margins are identified. The use of flow enhancement techniques such as internal twisted tapes and fins are discussed, and some estimates of the gains in the design margin are presented. Finally, unresolved issues and concerns regarding hydraulic design of divertors are summarized, and some experiments which could help the ITER final design process identified.