ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
J. A. Koski, R. D. Watson, P. L. Goranson, A. M. Hassanein, J. C. Salmonson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1729-1735
Impurity Control and Plasma-Facing Component | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29591
Articles are hosted by Taylor and Francis Online.
Critical Heat Flux (CHF), also called burnout, is one of the major design limits for water-cooled divertors in tokamaks. Another important design issue is the correct thermal modeling of the divertor plate geometry where heat is applied to only one side of the plate and highly subcooled flow boiling in internal passages is used for heat removal. This paper discusses analytical techniques developed to address these design issues, and the experimental evidence gathered in support of the approach. Typical water-cooled divertor designs for the International Thermonuclear Experimental Reactor (ITER), where peak divertor heat fluxes as high as 15 MW/m2 are expected, are analyzed, and design margins estimated. Peaking of the heat flux at the tube-water boundary is shown to be an important issue, and design concerns which could lead to imposing large design safety margins are identified. The use of flow enhancement techniques such as internal twisted tapes and fins are discussed, and some estimates of the gains in the design margin are presented. Finally, unresolved issues and concerns regarding hydraulic design of divertors are summarized, and some experiments which could help the ITER final design process identified.