ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
T. Uda, K. Okuno, S. O'Hira, Y. Naruse
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1651-1656
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29578
Articles are hosted by Taylor and Francis Online.
To study the application of laser Raman spectroscopy to analysis fusion fuel processing gas, six hydrogen isotopes were experimentally measured. Raman spectra of these mixture gases showed that the useful lines for quantitative analysis are Stokes rotations below 1000 cm−1, with representative lines for H2, HD, D2, HT, DT and T2 being 587, 443, 415, 395, 250 and 200 cm−1 respectively. The absolute Raman intensity ratio was estimated as H2:HD:D2:HT:DT:T2 = 100:58:47:46:36:41. With the laser wavelength of 488 nm, power of 700 mW and using a multiple pass system, the detection limit for H2 was 10 Pa, which was the equivalent of 100 ppm in concentration. As a remote sensing technology, the optical fiber was verified as applicable for transferring the irradiation laser beam.