ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R.S. Matsugu, J.C. Lehman, L. Borowski, P. Ladd
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1634-1639
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29575
Articles are hosted by Taylor and Francis Online.
A Tritium Filling Station to charge Inertial Confinement Fusion laser target microballoons with an equimolar mixture of tritium and deuterium has been designed, fabricated and pre-commissioned. The University of Rochester Laboratory for Laser Energetics will use the apparatus to produce targets for irradiation by their OMEGA glass laser. Microballoons are filled by diffusion through their walls. Each microballoon will hold about 5 millicuries of tritium in a deuterium-tritium mix at pressures of up to 15,000 kpa (2,200 psia). The maximum system tritium inventory is 10,000 curies.a Tritium and deuterium are stored in uranium beds. After retrieval from the beds, the deuterium-tritium mixture is assayed and transferred to the microballoon charging vessel via a unique palladium diffuser regulator. All components are housed in an inert atmosphere glove box with a getter-based purification system. The system design basis is presented with a description of mechanical and electrical components. Experience with the manufacture of tritium compatible equipment and subsequent system shop testing is described.