ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R. G. Clemmer, D. K. Sze, P. E. Blackburn, E. VanDeventer, V. A. Maroni
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1612-1618
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29572
Articles are hosted by Taylor and Francis Online.
A 2:1 mixture of LiF and BeF2 (FLIBE), is a potential tritium breeder material for fusion reactors, in particular, the Advanced Safe Pool Immersed Reactor (ASPIRE). A limited experimental campaign was conducted in an effort to test the postulates of the ASPIRE concept: namely, that MoF6 is effective in controlling the tritium species by maintaining the TF form and that MoF6 can serve as a source to plate out Mo on surfaces, thereby making the FLIBE system compatible with the corrosive TF. It was demonstrated experimentally that successive additions of MoF6 achieved quantitative (i.e., greater than 99.7%) conversion of H2 to HF. Thus, MoF6 is effective in controlling the tritium species. The degree of conversion of H2 to HF demonstrates that HF does not attack MO to form H2. This supports the postulate that the system is compatible with Mo. Thus, if it were possible to plate out and maintain a coating of Mo on all surfaces in contact with the FLIBE system, the ASPIRE concept could work. Thermodynamic calculations also confirmed that MoF6 should be capable of quantitatively (>99.9%) converting H2 to HF. There is both experimental and theoretical evidence that a number of MoFx species are present in both the gas phase and the FLIBE solution.