ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
P.A. Finn, D.K. Sze, R.G. Clemmer
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1589-1594
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29568
Articles are hosted by Taylor and Francis Online.
The tritium recovery system for the U.S. ITER Li2O/Be water cooled blanket processes two separate helium purge streams to recovery tritium from the Li2O zones and the Be zones of the blanket, to process the waste products, and to recirculate the helium back to the blanket. The components are selected to minimize the tritium inventory of the recovery system, and to minimize waste products. The system is robust to either an increase in the tritium release rate or to an in-leak of water in the purge system. Three major components were used to process these streams, first, 5A molecular sieves at −196°C separate hydrogen from the helium, second, a solid oxide electrolysis unit is used to reduce all molecular water, and third, a palladium/silver diffuser is used to ensure that only hydrogen (H2, HT) species reach the cryogenic distillation unit. The total tritium process inventory is 20g. The total capital cost is ∼$14M. Technical advantages of a solid oxide electrolysis unit and a palladium/silver diffuser are presented.