ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
R.A. Causey, K.L. Wilson, W.R Wampler, B.L. Doyle
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1585-1588
Material and Tritium | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29567
Articles are hosted by Taylor and Francis Online.
For the next generation of fusion reactors, tritium inventory will be one of the greatest safety concerns. Both CIT and ITER call for the use of graphite or carbon composites as the first wall and divertor material. If this graphite should contain a large number of traps for the storage of tritium, the resulting inventory could restrict the operation of the reactor. This report presents the results of an experimental study on the effects of neutron irradiation on the trapping of tritium in graphite. Enhancements in the trapping levels by two orders of magnitude up to as high as 0.2 atomic percent were seen for graphite samples irradiated to approximately 10 dpa at different temperatures. The results are compared to those obtained for ion damaged samples. The implications of the results for the operation of CIT and ITER are examined.