ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
I.N. Sviatoslavsky, J.P. Blanchard, Y. Gohar, S. Majumdar
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1552-1557
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29562
Articles are hosted by Taylor and Francis Online.
The solid breeder blanket has been chosen as the first option for ITER, with three of the four participating international groups submitting designs utilizing solid breeding materials. This paper describes the design submitted by the U.S. group. The ITER chamber will have both inboard and outboard blankets. The outboard side is divided into 48 modules, three per TF sector, where one central module fits between TF coils and two side modules fit partially within the coils. The central module is divided into an upper and lower segment leaving space at the midplane for penetrations. These penetrations include spaces for test modules, neutral beams and RF heating units. The two side modules extend the full height of the reactor. The inboard side is divided into 32 modules with each module separated into three electrically insulated front zones. A slab configuration is used within the blanket, where Be zones are interleaved with thin LiO2 solid breeder zones and water coolant panels. In the outboard blanket the first wall and coolant panels have toroidal channels while the inboard blanket has poloidal channels. The first wall has to be designed to be capable of withstanding the pressure generated by plasma disruptions. An independent coolant loop is used for the first wail while the blanket and shield are integrated into another loop.