ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
I.N. Sviatoslavsky, J.P. Blanchard, Y. Gohar, S. Majumdar
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1552-1557
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29562
Articles are hosted by Taylor and Francis Online.
The solid breeder blanket has been chosen as the first option for ITER, with three of the four participating international groups submitting designs utilizing solid breeding materials. This paper describes the design submitted by the U.S. group. The ITER chamber will have both inboard and outboard blankets. The outboard side is divided into 48 modules, three per TF sector, where one central module fits between TF coils and two side modules fit partially within the coils. The central module is divided into an upper and lower segment leaving space at the midplane for penetrations. These penetrations include spaces for test modules, neutral beams and RF heating units. The two side modules extend the full height of the reactor. The inboard side is divided into 32 modules with each module separated into three electrically insulated front zones. A slab configuration is used within the blanket, where Be zones are interleaved with thin LiO2 solid breeder zones and water coolant panels. In the outboard blanket the first wall and coolant panels have toroidal channels while the inboard blanket has poloidal channels. The first wall has to be designed to be capable of withstanding the pressure generated by plasma disruptions. An independent coolant loop is used for the first wail while the blanket and shield are integrated into another loop.