ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
I.N. Sviatoslavsky, J.P. Blanchard, Y. Gohar, S. Majumdar
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1552-1557
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29562
Articles are hosted by Taylor and Francis Online.
The solid breeder blanket has been chosen as the first option for ITER, with three of the four participating international groups submitting designs utilizing solid breeding materials. This paper describes the design submitted by the U.S. group. The ITER chamber will have both inboard and outboard blankets. The outboard side is divided into 48 modules, three per TF sector, where one central module fits between TF coils and two side modules fit partially within the coils. The central module is divided into an upper and lower segment leaving space at the midplane for penetrations. These penetrations include spaces for test modules, neutral beams and RF heating units. The two side modules extend the full height of the reactor. The inboard side is divided into 32 modules with each module separated into three electrically insulated front zones. A slab configuration is used within the blanket, where Be zones are interleaved with thin LiO2 solid breeder zones and water coolant panels. In the outboard blanket the first wall and coolant panels have toroidal channels while the inboard blanket has poloidal channels. The first wall has to be designed to be capable of withstanding the pressure generated by plasma disruptions. An independent coolant loop is used for the first wail while the blanket and shield are integrated into another loop.