ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
A.R. Raffray, Z.R. Gorbis, M.A. Abdou
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1525-1531
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29558
Articles are hosted by Taylor and Francis Online.
Several transport mechanisms are involved in tritium transport in solid breeders—diffusion in the grain, diffusion along grain boundary, bulk adsorption on the grain boundary/pore interface, desorption to the pores, diffusion along interconnected porosities and convection by the purge flow. It is generally thought that two of the most rate controlling mechanisms are diffusion in the grain and desorption at the grain boundary/pore interface. However, depending on the breeder microstructure, diffusion through the pore can also significantly affect the overall tritium transport process. These three mechanisms are considered here, and the key parameters affecting the tritium transport rate by each mechanism are characterized. Grain diffusion and desorption are first compared, and multi-parameter plots showing regions of diffusion and desorption controls are derived for cases of purge flow with and without hydrogen addition. Grain diffusion is then compared to pore diffusion and the effect of the solid breeder microstructure on the pore diffusion coefficient is discussed. Finally, the resulting equations and plots are applied to experimental data from the LISA1 and TRIO experiments to evaluate the rate-controlling mechanisms.