ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
J. D. Galambos, Y-K. M. Peng, L. J. Perkins
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1463-1468
ITER | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29547
Articles are hosted by Taylor and Francis Online.
The nominal International Thermonuclear Experimental Reactor (ITER) configuration is a double-null (DN) divertor, which requires precise plasma vertical position control. Vertical displacements of only about 1 cm (out of a plasma height of 4.7 m) are estimated to destroy the up/down symmetric distribution of power flow to the divertor plates. As an alternate configuration to avoid this difficulty, we look at the single-null (SN) option, where all the charged power flow is deposited on the lower divertor plate. The primary consideration in this study is that of technology phase performance (maximum neutron wall load) for the ITER divertor heat load and plasma constraints. With regard to the divertor heat loads, the SN case has the advantages of (a) longer scrape-off field line connection lengths and (b) more vertical space, which allows a greater spreading of the heat load on the divertor plates. These advantages offset the SN case disadvantage of having fewer divertor plates, and therefore the potential for higher heat fluxes for a given core plasma condition. The attainable wall loads for the SN and DN divertors are found to be similar for steady-state and hybrid operation scenarios.