ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
G. R. Smolik, S. J. Piet, R. M. Neilson, Jr.
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1398-1402
Safety | Proceedings of the Ninth Topical Meeting on the Technology of Fusion Energy (Oak Brook, Illinois, October 7-11, 1990) | doi.org/10.13182/FST91-A29538
Articles are hosted by Taylor and Francis Online.
Postulated long-term loss of coolant accidents (LOCA) for the International Thermonuclear Experimental Reactor (ITER) may involve the ingress of air or steam into the plasma chamber. Reactions of these gases with the hot plasma facing components will cause oxidation, transport, and release of activated species. To predict radioactivity releases, we measured volatility rates from a tungsten alloy. Tests were performed in air or steam between 600 and 1200°C for 1 to 20 h. We used these volatilization rates to calculate radioactivity releases from severe hypothetical ITER accidents. We found that both the first wall and divertor plates fabricated from or coated with tungsten may release significant radioactivity in severe hypothetical LOCAs. Without radioactivity confinement or credit for in-plant deposition, the site boundary Early Effective Dose Equivalent (EDE) acceptance criterion of 100 mSv (10 rem) is exceeded by a factor of about thirty in either an air or steam accident. With radioactivity confinement and reference LOCA conditions of 700°C for the divertor plates and 600°C for the first wall, air and steam provide doses of 50 and 30 mSv, respectively. We conclude that tungsten-bearing components are not attractive from a passive safety standpoint. With radioactivity confinement and reference conditions, however, these components can meet the anticipated regulatory criterion.