ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. Durrer, T.A. Parish, G. Schlapper, R. Carrera
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1337-1341
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29528
Articles are hosted by Taylor and Francis Online.
The IGNITEX experiment is being designed to study the physics of ignited plasmas. Over the service lifetime of the device (two years), it is expected to be pulsed 2,000 times with each pulse producing 150 MW of DT fusion power for approximately five seconds. Neutrons from each pulse will activate the magnet structure, liquid nitrogen in the cryostat and test cell air. Radioactive effluents from IGNITEX will primarily result from activated air, activated liquid nitrogen, and tritium. To provide a perspective for evaluating the doses resulting from the gaseous effluents from IGNITEX, the doses from the gaseous effluents from a 1 MW fission research reactor were also calculated.For both facilities, the primary effluents are airborne. Two dose receptor locations were assumed. The first was taken to be the building nearest to the facility and it was taken to be 400 m distant. The second was the nearest residence and it was taken to be 1.2 km distant. For the dose calculations, the air stability was assumed to be neutral and the dose receptors were assumed to be in the direction of a 4.5 m/sec prevailing wind. All releases were taken to be at ground level. The equations used to calculate the annual doses were taken from Regulatory Guide 1.109. The gaseous effluents from IGNITEX were assumed to consist of 41Ar, 13N, 16N, 14C, and 3H. Effluents from the fission research reactor consisted of 41Ar, gaseous and semi-volatile fission products. Each facility's dose was compared to the 10CFR50 Appendix I limits. In each dose category, with the exception of the thyroid dose the dose resulting from the operation of IGNITEX were more than that of the fission reactor. The increased doses were due primarily to the activated nitrogen releases.