ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
E. Montalvo, B. R. Shi1, R. Carrera, G. Y. Fu2, Z. Guo3, R. Haleltine, L. M. Hively4, G. H. Miley5, M. N. Rosenbluth6, K. Tani7, J. W. Van Dam, X. Xiao8
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1284-1289
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29518
Articles are hosted by Taylor and Francis Online.
Alpha healing, alpha containment, and alpha stabilization effects are studied in the fusion ignition experiment IGNITEX. The IGNITEX device offers the possibility of producing fusion-ignited plasmas with ohmic heating alone. It is shown here that operating regimes with high probability for ignition and simplicity of operation are possible in IGNITEX. Time-dependent simulations showing the ohmic heating and alpha healing coupling through the discharge are presented. The characteristics for alpha transport with magnetic field perturbations are analyzed in detail using Monte-Carlo techniques. The stability of internal MHD modes and the interaction with alpha particles in the inner confinement region of ignited plasmas is studied. Specifically, the stability of resistive internal kinks, ideal internal kinks, and fishbones is presented. It is shown that a quiescent regime of operation is possible during the ignited phase in IGNITEX. Because of its ample ignition margin, its high alpha containment, and the possibility of operation far from marginal stability and the possibility of ignition operation with quiescent regimes in the inner region of the plasma, it is concluded that the IGNITEX device can produce fusion-ignited plasmas in a simple manner.