ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
INL makes first fuel for Molten Chloride Reactor Experiment
Idaho National Laboratory has announced the creation of the first batch of enriched uranium chloride fuel salt for the Molten Chloride Reactor Experiment (MCRE). INL said that its fuel production team delivered the first fuel salt batch at the end of September, and it intends to produce four additional batches by March 2026. MCRE will require a total of 72–75 batches of fuel salt for the reactor to go critical.
E. Montalvo, B. R. Shi1, R. Carrera, G. Y. Fu2, Z. Guo3, R. Haleltine, L. M. Hively4, G. H. Miley5, M. N. Rosenbluth6, K. Tani7, J. W. Van Dam, X. Xiao8
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1284-1289
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29518
Articles are hosted by Taylor and Francis Online.
Alpha healing, alpha containment, and alpha stabilization effects are studied in the fusion ignition experiment IGNITEX. The IGNITEX device offers the possibility of producing fusion-ignited plasmas with ohmic heating alone. It is shown here that operating regimes with high probability for ignition and simplicity of operation are possible in IGNITEX. Time-dependent simulations showing the ohmic heating and alpha healing coupling through the discharge are presented. The characteristics for alpha transport with magnetic field perturbations are analyzed in detail using Monte-Carlo techniques. The stability of internal MHD modes and the interaction with alpha particles in the inner confinement region of ignited plasmas is studied. Specifically, the stability of resistive internal kinks, ideal internal kinks, and fishbones is presented. It is shown that a quiescent regime of operation is possible during the ignited phase in IGNITEX. Because of its ample ignition margin, its high alpha containment, and the possibility of operation far from marginal stability and the possibility of ignition operation with quiescent regimes in the inner region of the plasma, it is concluded that the IGNITEX device can produce fusion-ignited plasmas in a simple manner.