ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A.P. Colleraine, J.L. Luxon, the DIII-D Group
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1247-1256
Result of Large Experiment and Plasma Engineering | doi.org/10.13182/FST91-A29513
Articles are hosted by Taylor and Francis Online.
The DIII-D Tokamak has become one of the major sources of physics and technology data for the design of future large machines such as ITER and CIT. In large part, this is because of its extremely flexible design and the ability to run tests or add new diagnostic devices with a minimum of down-time and expense. Fundamental plasma physics studies are still the major focus of our experimental program but, increasingly, we are looking at new ways to answer the complex fusion technology questions emerging from the design studies for the next-generation devices. Recent results have demonstrated world record beta plasmas, long quiescent H-mode operation, partial noninductive current drive using both neutral beam and rf power injection, single- and double-null divertor operation, and divertor particle- and heat-load management. The recently installed Advanced Divertor hardware will allow critical transport experiments to be run with independent control of the density. It will also permit the concept of dc helicity injection current drive to be tested. This paper summarizes our most important recent findings and also outlines a few of the many interesting problems that are now under study to address fusion technology questions.