ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
R.L. Sledge, G.W. Branson, R. Carrera, KT. Hsieh, W.F. Weldon, M.D. Werst
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1205-1210
Ignition Device | doi.org/10.13182/FST91-A29507
Articles are hosted by Taylor and Francis Online.
The Ignition Technology Demonstration (ITD) is a full torus, scaled prototype of the 20 T toroidal field (TF) coil of the proposed fusion ignition experiment IGNITEX. The 0.06 scale in linear dimension is based on the linear relation between the peak current of an existing power supply (9 MA) and the current required to produce a 20 T field in the fullscale machine (150 MA). Presented here are the design and performance of a busbar and switch which have successfully transferred a total current of 6.75 MA to the ITD during a 15 T experiment. Design considerations included thermal and electromechanical stresses, material properties in liquid nitrogen, electrical resistance and inductance, and physical integration with the existing power supply. The ITD is driven by a 60 MJ, 9 MA power supply consisting of six 1.5 MA homopolar generators (HPGs) located in the Center for Electromechanics at The University of Texas at Austin (CEM-UT).