ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
M. J. Johnson, W. F. Weldon, D. J. Wehrlen, M. D. Werst
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1199-1204
Ignition Device | doi.org/10.13182/FST91-A29506
Articles are hosted by Taylor and Francis Online.
The Center for Electromechanics has designed, fabricated, and is now operating a prototype of a full torus, 20 Tesla (T) on-axis, single turn, toroidal field (TF) magnet system powered by the Balcones Homopolar Generators (HPGs). This magnet system is part of the Ignition Technology Demonstration (ITD) program for the fusion ignition experiment (IGNITEX). The six HPGs connected to the prototype magnet in parallel are capable of producing a 9 MA, 150 ms, current pulse required for a 20 T ITD test. The diagnostic system for the prototype magnet is designed to determine strains, temperatures, and magnetic fields at several locations in the TF magnet. These values are used to verify numerical predictions by electromechanical and thermomechanical analyses. Operating conditions for the instrumentation inside the cryogenically cooled magnet are extreme; localized temperatures inside the magnet can rise from - 196°C to 200°C during the current pulse and the magnet field levels near the inner leg surface can rise to 30 T in 30 ms. The specifications, testing, and layout of the diagnostic and data acquisition systems for the ITD prototype are presented in this paper.