ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
W. A. Walls, J. H. Gully, W. F. Weldon, H. H. Woodson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1154-1159
Ignition Device | doi.org/10.13182/FST91-A29499
Articles are hosted by Taylor and Francis Online.
The concept for a single-turn tokamak experiment IGNITEX1 makes possible the realization of a controlled, self-sustained fusion reaction in the near term with relative simplicity and low cost. The IGNITEX tokamak utilizes low-impedance toroidal field (TF) and poloidal field (PF) magnet systems which induce the high-level fields and currents required for fusion ignition. These magnet systems require power supplies that can meet strict operational conditions. Homopolar generators (HPGs) are well suited for operation of a single-turn tokamak because they are inherently high current, low-voltage machines which can kinetically store all the energy required for a pulsed discharge. The energy storage is accomplished in a compact manner by using high speed composite flywheel technology and provides the added advantage of keeping electrical grid power requirements very low. Finally, since HPGs are simple dc machines, their cost is low and rectifier systems are not necessary. In this paper, the HPG technologies to be utilized in a fusion ignition experiment are described. The various components, materials, and design considerations for the HPG current-collection systems are reviewed, including rotor slip ring, brushes, and actuators. Design, fabrication, and assembly techniques for the lightweight, composite, energy-storage flywheel are given. The status of these HPG technologies relative to IGNITEX power supply requirements are reviewed. The modes of operation of the TF and PF magnet systems are analyzed. Questions of reliability of operation, maintenance, and cost evaluation are also addressed. Finally, the construction and testing of a full-scale prototype IGNITEX HPG power supply module is proposed.