ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Recent surveys confirm high levels of U.S. nuclear support
Surveys have consistently indicated that public support in the United States for the use of nuclear energy has been increasing in recent years. Four recent surveys continue to suggest that near-record-high numbers of Americans support nuclear energy. However, the survey results differ—sometimes widely—in the details of their findings.
W. A. Walls, J. H. Gully, W. F. Weldon, H. H. Woodson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1154-1159
Ignition Device | doi.org/10.13182/FST91-A29499
Articles are hosted by Taylor and Francis Online.
The concept for a single-turn tokamak experiment IGNITEX1 makes possible the realization of a controlled, self-sustained fusion reaction in the near term with relative simplicity and low cost. The IGNITEX tokamak utilizes low-impedance toroidal field (TF) and poloidal field (PF) magnet systems which induce the high-level fields and currents required for fusion ignition. These magnet systems require power supplies that can meet strict operational conditions. Homopolar generators (HPGs) are well suited for operation of a single-turn tokamak because they are inherently high current, low-voltage machines which can kinetically store all the energy required for a pulsed discharge. The energy storage is accomplished in a compact manner by using high speed composite flywheel technology and provides the added advantage of keeping electrical grid power requirements very low. Finally, since HPGs are simple dc machines, their cost is low and rectifier systems are not necessary. In this paper, the HPG technologies to be utilized in a fusion ignition experiment are described. The various components, materials, and design considerations for the HPG current-collection systems are reviewed, including rotor slip ring, brushes, and actuators. Design, fabrication, and assembly techniques for the lightweight, composite, energy-storage flywheel are given. The status of these HPG technologies relative to IGNITEX power supply requirements are reviewed. The modes of operation of the TF and PF magnet systems are analyzed. Questions of reliability of operation, maintenance, and cost evaluation are also addressed. Finally, the construction and testing of a full-scale prototype IGNITEX HPG power supply module is proposed.