ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
G. W. Brunson, W. D. Booth, R. Carrera, W. F. Weldon
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1149-1153
Ignition Device | doi.org/10.13182/FST91-A29498
Articles are hosted by Taylor and Francis Online.
A basic requisite of the Fusion Ignition Experiment (IGNITEX)1 is the production of a high (20 T) toroidal field (TF) by a single turn coil. The proposed high-field technology uses precooling and preloading systems. The Ignition Technology Demonstration (ITD) program, designed to produce 20 T on axis in a 0.06 scale prototype TF coil, utilizes a preloading structure and a precooling system. The preloading structure is a hydraulic press built around the TF coil, capable of a force of 1.1 Mlb (4.9 MN) and a stroke of 0.5 in. (1.3 cm). The precooling system is an open-top LN2 cryostat tub integrated into the preload press. The IGNITEX experiment is estimated to use a preload press with force capacity of approximately 150,000 tons (1.3 GN), and with a stroke on the order of 2 in. (5.1 cm). Design considerations include efficient use of material, design of large scale hydraulic actuators, shielding to reduce radiation from activated material, maintenance, cost, and reliability. The precooling system design involves considerations of feedthroughs, minimal cooling time between pulses, maintenance and reliability.