ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
W. D. Booth, G. W. Branson, R. Carrera, G. Hallock, S. S. Medley, M. E. Oakes, C. A. Ordonez,† T. A. Parish,‡ R. L. Sledge, W. A. Walls, W. F. Weldon, M. D. Werst
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1143-1148
Ignition Device | doi.org/10.13182/FST91-A29497
Articles are hosted by Taylor and Francis Online.
The basic fusion ignition experiment IGNITEX can achieve plasma ignition through the use of high toroidal fields (20 T) and ohmic heating. The experiment will operate in a pulsed tokamak mode with one discharge every two hours. The single-turn-coil system will be driven by homopolar generators and will be cooled by a liquid nitrogen bath. The experimental program will stretch over a three year period with the first D-T fueled discharges taking place after about 19 months of operation. Hands-on maintenance is possible both inside and outside the primary shielding due to the low activation levels of the experiment. This low activation is because of the almost complete coverage of the vacuum vessel by the thick copper magnetic coil system and the single-turn coil design which does not require the usual high activation laminate materials. IGNITEX systems are designed to provide high reliability and simplicity to extend machine availability in the fusion ignition regimes.