ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
J.N. Brooks, H.F. Dylla, A.E. Pontau, K.L. Wilson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1095-1101
Ignition Device | doi.org/10.13182/FST91-A29489
Articles are hosted by Taylor and Francis Online.
The expected buildup of co-deposited tritium on the CIT carbon divertor and first wall surfaces and operational methods of minimizing the inventory have been examined. The analysis uses impurity transport computer codes, and associated plasma and tritium retention models, to compute the thickness of redeposited sputtered carbon and the resulting co-deposited tritium inventory on the divertor plates and first wall. Predicted erosion/growth rates are dominated by the effect of gaps between carbon tiles. The overall results appear favorable, showing stable operation (finite self-sputtering) and acceptably low (∼25 Ci/pulse) co-deposited tritium rates, at high surface temperature (1700°C) design conditions. These results, however, are speculative due to serious model inadequacies at the high sputtering rates predicted. If stable operation is obtainable, the prospects appear good for adequate tritium inventory control via helium-oxygen glow discharge cleaning.