ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
T. Kunugi, M. Z. Hasan
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1024-1029
Blanket Technology | doi.org/10.13182/FST91-A29477
Articles are hosted by Taylor and Francis Online.
Convective heat transfer in the thermally developing region in a circular channel of the first wall and limiter/divertor plates of a fusion reactor has been analyzed numerically. The surface heat flux on a coolant channel in these plasma facing components varies circumferentially. The flow is assumed non-MHD fully-developed laminar and turbulent in a circular tube. The nonuniformity of surface heat flux greatly affect the Nusselt number and thermal entry length. For the cosine distribution of surface heat flux, the steady-state Nusselt number can be reduced at the point of maximum heat flux by as much as 38%, 62% and 37% for fully-developed laminar Poiseuille, laminar slug and turbulent flows, respectively. Thermal entry length can be increased by up to 2.4 times for laminar flow and 3.5 times for turbulent flow due to the nonuniformity of surface heat flux. If this reduction of Nusselt number due to the nonuniformity of surface heat flux is disregarded, the film temperature drop in the coolant channels of plasma facing components of a fusion reactor will be underestimated by 37% to 62%. This will result in an underestimation of the maximum structure temperature. The increase in entry length is not likely to affect the thermal-hydraulic design of a conventional divertor plate.