ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
T. Kunugi, M. Z. Hasan
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1024-1029
Blanket Technology | doi.org/10.13182/FST91-A29477
Articles are hosted by Taylor and Francis Online.
Convective heat transfer in the thermally developing region in a circular channel of the first wall and limiter/divertor plates of a fusion reactor has been analyzed numerically. The surface heat flux on a coolant channel in these plasma facing components varies circumferentially. The flow is assumed non-MHD fully-developed laminar and turbulent in a circular tube. The nonuniformity of surface heat flux greatly affect the Nusselt number and thermal entry length. For the cosine distribution of surface heat flux, the steady-state Nusselt number can be reduced at the point of maximum heat flux by as much as 38%, 62% and 37% for fully-developed laminar Poiseuille, laminar slug and turbulent flows, respectively. Thermal entry length can be increased by up to 2.4 times for laminar flow and 3.5 times for turbulent flow due to the nonuniformity of surface heat flux. If this reduction of Nusselt number due to the nonuniformity of surface heat flux is disregarded, the film temperature drop in the coolant channels of plasma facing components of a fusion reactor will be underestimated by 37% to 62%. This will result in an underestimation of the maximum structure temperature. The increase in entry length is not likely to affect the thermal-hydraulic design of a conventional divertor plate.