ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
T. Kunugi, M. S. Tillack, M. A. Abdou
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 1000-1005
Blanket Technology | doi.org/10.13182/FST91-A29473
Articles are hosted by Taylor and Francis Online.
A new computer code has been developed with the capability to model laminar liquid metal fluid flow and heat transfer in relatively complex geometries at parameter values greater than previously possible with a transient 3-D “full” numerical solution of the MHD equations. The full solution method, which includes viscous and inertial terms, provides an exact solution for boundary layers and is valid over a wide range of flow parameters. Previous attempts at numerically solving the full MHD equations have been limited in the range of magnetic field strengths (B) and Reynolds number (Re) which could be accurately modelled. Numerical techniques for treating problems at high B and Re are implemented in this code, named KAT. The KAT code is written in rectangular coordinates, with a sophisticated mesh generator and boundary condition input routines. Single-duct and multiple-duct geometries can be modelled with arbitrary wall conductivity and magnetic field variation throughout the solution domain. The code has been tested and benchmarked against analytical solutions and fully-developed very highly accurate numerical solution obtained by 2-D finite element method (FEM). The KAT solutions are in very good agreement with analytic and FEM solutions. The KAT code was applied to a right-angle rectangular bend problem with inclined B-field. Finally, the capabilities of the code and future applications are discussed.