ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Keiji Miyazaki, Kensuke Konishi, Hiroshi Aoyama, Shoji Inoue, Nobuo Yamaoka
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 961-968
Blanket Technology | doi.org/10.13182/FST91-A29467
Articles are hosted by Taylor and Francis Online.
For reducing the liquid metal MHD pressure drop in the inlet and outlet pipings of a fusion power reactor, the authors proposed a circular duct of electrically insulating function which consists of an outer pipe of metal structure and an inner pipe of insulating ceramics. A basic experiment was made with NaK. The test section which was made of a 25.4 mm O.D. 2.1 mm thick 304-SS pipe and a concentrically inserted 20 mm O.D., 1.0 mm thick FRP pipe with 0.6 mm clearance filled with NaK. The results are quite encouraging as summarized below. (1) The MHD drop gradient is proportional to the flow velocity U and the magnetic flux density B (c.f. B2 for a conducting duct). (2) It is 1.6 times larger than the Shercliff's theory for perfect insulation. (3) It is reduced down to 4.6% at B= 1.0 T and to 3.2% at B= 1.5 T in comparison with the case of uninsulated duct, and to less than 1% if merely extended to B= 5 T or higher.