ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
T. Kurasawa, R. A. Verrali, O. D. Slagle, G. W. Hollenberg
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 931-937
Blanket Technology | doi.org/10.13182/FST91-A29463
Articles are hosted by Taylor and Francis Online.
The BEATRIX-II experiment in FFTF is an in-situ tritium recovery experiment to evaluate the tritium release characteristics of Li2O and its stability under fast neutron irradiation to extended burnups. This experiment includes two specimens: a thin annular ring specimen capable of temperature transients and a solid temperature gradient specimen. During the first 85 days of the operating cycle of the reactor, the tritium recovery rate of a temperature transient capsule was examined as a function of temperature, gas flow rate, gas composition and burnup. Temperature changes in the range from 500 to 650°C resulted in decreasing tritium inventory with increasing temperature. Lower gas flow rates resulted in slightly lower tritium recovery rates while gas composition changes affected the tritium recovery rate significantly more than either flow rate or temperature changes. Three different sweep gases were used: He-0.1% H2, He-0.01% H2, and pure He. Decreasing the amount of hydrogen in the sweep gas decreased the steady-state recovery rate by as much as a factor of two. A temperature gradient capsule is more prototypic of the conditions expected in a fusion blanket and was designed to provide data that can be used in evaluating the operational parameters of a solid breeder in a blanket environment. The operation of this canister during the first 85 EFPD cycle suggests that Li2O is a viable solid breeder material.