ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Russia withdraws from 25-year-old weapons-grade plutonium agreement
Russia’s lower house of Parliament, the State Duma, approved a measure to withdraw from a 25-year-old agreement with the United States to cut back on the leftover plutonium from Cold War–era nuclear weapons.
S. Sharafat, C. P. C. Wong, E. E. Reis, THE ARIES TEAM
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 901-907
Advanced Reactor | doi.org/10.13182/FST91-A29459
Articles are hosted by Taylor and Francis Online.
The ARIES-I reactor is a 1000-MWe, DT-burning tokamak reactor that combines present-day physics with advanced engineering technology such as high-field superconducting magnets and low-activation SiC composites as structural material. Recent developments in the manufacturing of fiber-reinforced ceramics for improved mechanical properties make these materials promising candidates for future fusion reactors. The low-activation, low-afterheat characteristics of SiC can lead to an inherently safe reactor design with a Class-C waste-disposal rating. The first wall, blanket, shield, and the divertor all use SiC composite as structural material and helium as coolant. The thermomechanical behavior of the first wall is analyzed using the ANSYS finite-element code. The analysis shows that the first wall performs well below suggested allowable stress and temperature limits. Although the finite element analysis assumes idealized conditions, the results indicate that SiC composite materials could perform well under specified operating conditions. Given the potential safety and environmental advantages of SiC composites, the current large-scale developmental efforts taking place outside of the fusion community should be complemented by R&D efforts that focus on neutron- and ionizing-irradiation effects on SiC composite materials.