ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep geologic repository progress—2025 Update
Editor's note: This article has was originally published in November 2023. It has been updated with new information as of June 2025.
Outside my office, there is a display case filled with rock samples from all over the world. It contains a disk of translucent, orange salt from the Waste Isolation Pilot Plant near Carlsbad, N.M.; a core of white-and-bronze gneiss from the site of the future deep geologic repository in Eurajoki, Finland; several angular chunks of fine-grained, gray claystone from the underground research laboratory at Bure, France; and a piece of coarse-grained granite from the underground research tunnel in Daejeon, South Korea.
S. Sharafat, C. P. C. Wong, E. E. Reis, THE ARIES TEAM
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 901-907
Advanced Reactor | doi.org/10.13182/FST91-A29459
Articles are hosted by Taylor and Francis Online.
The ARIES-I reactor is a 1000-MWe, DT-burning tokamak reactor that combines present-day physics with advanced engineering technology such as high-field superconducting magnets and low-activation SiC composites as structural material. Recent developments in the manufacturing of fiber-reinforced ceramics for improved mechanical properties make these materials promising candidates for future fusion reactors. The low-activation, low-afterheat characteristics of SiC can lead to an inherently safe reactor design with a Class-C waste-disposal rating. The first wall, blanket, shield, and the divertor all use SiC composite as structural material and helium as coolant. The thermomechanical behavior of the first wall is analyzed using the ANSYS finite-element code. The analysis shows that the first wall performs well below suggested allowable stress and temperature limits. Although the finite element analysis assumes idealized conditions, the results indicate that SiC composite materials could perform well under specified operating conditions. Given the potential safety and environmental advantages of SiC composites, the current large-scale developmental efforts taking place outside of the fusion community should be complemented by R&D efforts that focus on neutron- and ionizing-irradiation effects on SiC composite materials.