ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
2025: The year in nuclear
As Nuclear News has done since 2022, we have compiled a review of the nuclear news that filled headlines and sparked conversations in the year just completed. Departing from the chronological format of years past, we open with the most impactful news of 2025: a survey of actions and orders of the Trump administration that are reshaping nuclear research, development, deployment, and commercialization. We then highlight some of the top news in nuclear restarts, new reactor testing programs, the fuel supply chain and broader fuel cycle, and more.
X.M. Chen, V.E.Schrock
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 721-726
Inertial Fusion | doi.org/10.13182/FST91-A29430
Articles are hosted by Taylor and Francis Online.
During isochoric heating by fast neutron irradiation, a high pressure is almost instantaneously built up inside the falling liquid jets in a HYLIFE inertial confinement fusion (ICF) reactor. It has been suggested that the jets will breakup as a consequence of negative pressure occurring during the relaxation1,2. This is important to both the subsequent condensation process and the chamber wall design. In this paper the mechanism of the relaxation of liquid jets after isochoric heating has been studied with both incompressible and compressible models. The transient pressure field predicted is qualitatively similar for both models and reveals a strongly peaked tension in the wake of a rarefaction wave. The pressure then rises monotonically in radius to zero pressure on the boundary. The incompressible approximation greatly over predicts the peak tension, which increases with time as the rarefaction wave moves toward the center of the jet. Since the tension distribution is as a narrow spike rather than uniform, a cylindrical fracture is the most likely mode of failure. This paper also discusses the available methods for estimating liquid tensile strength.