ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
X.M. Chen, V.E.Schrock
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 721-726
Inertial Fusion | doi.org/10.13182/FST91-A29430
Articles are hosted by Taylor and Francis Online.
During isochoric heating by fast neutron irradiation, a high pressure is almost instantaneously built up inside the falling liquid jets in a HYLIFE inertial confinement fusion (ICF) reactor. It has been suggested that the jets will breakup as a consequence of negative pressure occurring during the relaxation1,2. This is important to both the subsequent condensation process and the chamber wall design. In this paper the mechanism of the relaxation of liquid jets after isochoric heating has been studied with both incompressible and compressible models. The transient pressure field predicted is qualitatively similar for both models and reveals a strongly peaked tension in the wake of a rarefaction wave. The pressure then rises monotonically in radius to zero pressure on the boundary. The incompressible approximation greatly over predicts the peak tension, which increases with time as the rarefaction wave moves toward the center of the jet. Since the tension distribution is as a narrow spike rather than uniform, a cylindrical fracture is the most likely mode of failure. This paper also discusses the available methods for estimating liquid tensile strength.