ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
U.K. consents to Hinkley Point B decommissioning
The U.K. government’s Office for Nuclear Regulation has granted EDF Energy formal consent to decommission the Hinkley Point B nuclear power plant in Somerset, England. The two-unit advanced gas-cooled reactor was permanently shut down in August 2022, and site owner EDF applied to ONR for decommissioning consent in August 2024.
K.H. Bang, J.J. MacFarlane, J.J. Barry, M.L. Corradini
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 716-720
Inertial Fusion | doi.org/10.13182/FST91-A29429
Articles are hosted by Taylor and Francis Online.
Condensation within rapidly expanding metal vapors has been experimentally investigated by exploding wires in a test chamber filled with helium or argon at various pressures (10 millitorr to 760 torr). Lead and silver wires were vaporized using a 5.0 kV, 15.4 - 500 µF capacitor discharge system. It was observed that the metal vapor prefers to condense as droplets with a resulting fog or aerosol cloud as opposed to surface condensation. The debris analysis showed that the resulting aerosol particles were spherical and the size ranged from 0.02 to 0.2 microns, suggesting the vapor condensed by homogeneous nucleation. The time-dependent conditions of the expanding vapor were simulated using a 1-D hydrodynamics code. The calculations indicate that the vapor quickly becomes super-saturated due to expansion cooling. The implications of our results for nucleate condensation in ICF target chambers are also discussed.