ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
R.L. Engelstad, J.W. Powers, E.G. Lovell
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 697-702
Inertial Fusion | doi.org/10.13182/FST91-A29426
Articles are hosted by Taylor and Francis Online.
Results are presented for the preliminary mechanical design of a light ion beam Laboratory Microfusion Facility (LMF). Applications of the facility include the development of high gain, high yield ICF targets. The LMF target chamber must meet the requirements imposed by the ion beam propagation, and survive severe target blast loadings. Yields from 10 to 1000 MJ are considered for a projected lifetime of up to 15,000 shots. The chamber will be subjected to repeated loadings that include intense x-ray vaporization of the first wall surface, resulting in large amplitude pressure waves. A carbon/carbon composite thermal liner has been proposed to attenuate the radial shock waves and protect the structural wall. Nevertheless, the chamber wall must still be designed to withstand large impulsive and residual pressures. The proposed target chamber consists of a capped cylindrical shell that is 1.5 m in radius and 4.5 m in height. The analysis of the mechanical response of the structural wall from the repetitive dynamic overpressures is described in detail. Modified elastic constants are used to account for the higher ligament stresses and strains which are present between the beam ports and diagnostic ports. In addition, fatigue lifetime calculations have been made according to ASME guidelines, applying cumulative damage criteria specified by Miner's rule. A modified rainflow cycle counting method was used in conjunction with Goodman diagrams to determine equivalent stresses and strains to be used with the constant amplitude, fully reversed fatigue data. Both 6061-T6 aluminum and 2 1/4 Cr - 1 Mo steel are considered for the structural materials, with maximum stress and fatigue design results developed for a range of thicknesses and overpressures.