ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
Osman Yasar, Gregory A. Moses, Robert R. Peterson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 669-672
Inertial Fusion | doi.org/10.13182/FST91-A29421
Articles are hosted by Taylor and Francis Online.
One method of propagating light ions from beam generating diodes to ICF targets in a fusion reactor is to use laser-guided plasma discharge channels to magnetically guide the ions. Earlier studies of different cavity gases (argon, nitrogen, helium) for the LIBRA reactor study indicated that the lower atomic number gases (helium) were most suitable for plasma channel formation. We found unacceptable channel expansion due to radiative transfer where the radiation transport was calculated with a multigroup diffusion computer code. A new set of simulations using a newly developed adaptive-grid radiation magnetohydrodynamics scheme with a multigroup discrete ordinates radiation transport method has led to lower absorption and emission by such thin plasmas. Application of the new scheme to LIBRA thus shows the feasibility of using argon and nitrogen as well for the channel plasma. Higher atomic number gases more strongly attenuate the x-rays coming from the target explosion. Also, by using an adaptive grid, the new scheme provides better accuracy and resolution where it is needed in the channel. The discharge current required to form the channel is found to be 70 kA as opposed to 100 kA predicted by earlier calculations. This will have the effect of reducing the required discharge voltage and thus will ease the problem of electrical breakdown between the channel and the target chamber wall.