ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Osman Yasar, Gregory A. Moses, Robert R. Peterson
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 669-672
Inertial Fusion | doi.org/10.13182/FST91-A29421
Articles are hosted by Taylor and Francis Online.
One method of propagating light ions from beam generating diodes to ICF targets in a fusion reactor is to use laser-guided plasma discharge channels to magnetically guide the ions. Earlier studies of different cavity gases (argon, nitrogen, helium) for the LIBRA reactor study indicated that the lower atomic number gases (helium) were most suitable for plasma channel formation. We found unacceptable channel expansion due to radiative transfer where the radiation transport was calculated with a multigroup diffusion computer code. A new set of simulations using a newly developed adaptive-grid radiation magnetohydrodynamics scheme with a multigroup discrete ordinates radiation transport method has led to lower absorption and emission by such thin plasmas. Application of the new scheme to LIBRA thus shows the feasibility of using argon and nitrogen as well for the channel plasma. Higher atomic number gases more strongly attenuate the x-rays coming from the target explosion. Also, by using an adaptive grid, the new scheme provides better accuracy and resolution where it is needed in the channel. The discharge current required to form the channel is found to be 70 kA as opposed to 100 kA predicted by earlier calculations. This will have the effect of reducing the required discharge voltage and thus will ease the problem of electrical breakdown between the channel and the target chamber wall.