ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
DOE-NE’s newest fuel consortium includes defense from antitrust laws
The Department of Energy's Office of Nuclear Energy is setting up a nuclear fuel Defense Production Act Consortium that will seek voluntary agreements with interested companies “to increase fuel availability, provide more access to reliable power, and end America’s reliance on foreign sources of enriched uranium and critical materials needed to power the nation’s nuclear renaissance.” According to an August 22 DOE press release, the plan invokes the Defense Production Act (DPA) to give consortium members “defense from antitrust laws when certain criteria are met” and “allow industry consultation to develop plans of action.” DOE-NE is looking for interested companies to join the consortium ahead of its first meeting, scheduled for October 14.
J. A. Sullivan, D. B. Harris, J. McLeod, N. A. Kurnit, J. Pendergrass, E. Rose
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 652-663
Inertial Fusion | doi.org/10.13182/FST91-A29419
Articles are hosted by Taylor and Francis Online.
The Department of Energy Inertial Fusion Division has initiated a study to determine the requirements for a national Laboratory Microfusion Facility (LMF). The candidate driver technologies must demonstrate an on-target energy capability in the 3- to 10-MJ range, with the pulse shape, duration, wavelength, etc., needed for high target gain. Projections from available data indicate that this amount of energy delivered to a fusion target could lead to high gain (25–100). Studies at Los Alamos aimed at defining the size, cost, and performance of megajoule-class fusion facilities show that the large extrapolation for the drivers and targets from present capabilities has significant cost and performance risks. Los Alamos has identified an intermediate step at the 100-kJ level that would permit the demonstration of krypton fluoride (KrF) laser and target physics scaling and would determine the best illumination geometry and target design through experimentation. This intermediate facility would be used to quantify target behavior with accurately shaped pulses of very short wavelength light. The advantages of broad bandwidth and induced spatial incoherence in suppressing target instabilities would also be assessed. The purpose of this paper is to describe the design of the Los Alamos 100-kJ Laser Target Test Facility. The critical design requirements and issues will be discussed and the design logic used to achieve the required performance for large KrF single-pulse inertial confinement fusion facilities will be described.