ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
J. A. Sullivan, D. B. Harris, J. McLeod, N. A. Kurnit, J. Pendergrass, E. Rose
Fusion Science and Technology | Volume 19 | Number 3 | May 1991 | Pages 652-663
Inertial Fusion | doi.org/10.13182/FST91-A29419
Articles are hosted by Taylor and Francis Online.
The Department of Energy Inertial Fusion Division has initiated a study to determine the requirements for a national Laboratory Microfusion Facility (LMF). The candidate driver technologies must demonstrate an on-target energy capability in the 3- to 10-MJ range, with the pulse shape, duration, wavelength, etc., needed for high target gain. Projections from available data indicate that this amount of energy delivered to a fusion target could lead to high gain (25–100). Studies at Los Alamos aimed at defining the size, cost, and performance of megajoule-class fusion facilities show that the large extrapolation for the drivers and targets from present capabilities has significant cost and performance risks. Los Alamos has identified an intermediate step at the 100-kJ level that would permit the demonstration of krypton fluoride (KrF) laser and target physics scaling and would determine the best illumination geometry and target design through experimentation. This intermediate facility would be used to quantify target behavior with accurately shaped pulses of very short wavelength light. The advantages of broad bandwidth and induced spatial incoherence in suppressing target instabilities would also be assessed. The purpose of this paper is to describe the design of the Los Alamos 100-kJ Laser Target Test Facility. The critical design requirements and issues will be discussed and the design logic used to achieve the required performance for large KrF single-pulse inertial confinement fusion facilities will be described.